Supplemental Table S1: Associations between FEV_1 (ml) and selected covariates (per unit increase), from a model for repeated measures using the proc mixed statement in SAS assuming unstructured covariance.

Covariate	Effect size (ml)	95% CI		
Age (years)	-29.7	-30.7, -28.7		
Height ² (cm ²)	0.15	0.154, 0.146		
Male (vs female)	578.0	537.6, 618.4		
White (vs non-White)	437.3	413.0, 461.6		
Smoking				
Current	-77.7	-105.7, -49.7		
Past	-24.7	-47.6, -4.5		
Missing	-40.0	-69.3, -19.3		
Risk score**	-156.9	-182.1, -129.9		
Cumulative PM _{2.5} (mg/m ³)	-7.5	-11.4, -3.6		

^{*}Model was also adjusted for individual facility and job grade.

^{**}Risk score was entered in the model log-transformed from its original scale which had a range of (0.5 - 50) with increasing values representing increasing expected health expenditures. In this range a value of 1 represents the median expected expenditures.

Supplemental Table 2: Average Predicted FEV₁ and FVC after 10 years of follow-up under hypothetical interventions and change in 50 multiply imputed datasets for missing smoking.

FEV ₁			FVC			
ht ²	2	Range**	FVC/height ² (ml/m ²)	Δ VC/height ² (ml/m ²)	Range**	
• • •	_ , , ,					
1121.6	Referent	Referent	1449.2	Referent	Referent	
1126.1	4.5	0.8, 8.2	1453.0	3.8	-0.7, 8.2	
1130.5	8.9	3.9, 13.9	1457.4	8.2	2.3, 14.1	
1131.9	10.3	4.1, 16.5	1458.1	8.9	1.7, 16.1	
1133.2	11.6	4.2, 19.0	1458.9	9.7	1.2, 18.2	
1135.5	13.9	2.8, 25.0	1459.5	10.3	-2.4, 23.0	
	ht ² (ml/m ²) 1121.6 1126.1 1130.5 1131.9 1133.2	EV ₁ /heig ΔFEV ₁ /height ht ² (ml/m ²) (ml/m ²) 1121.6 Referent 1126.1 4.5 1130.5 8.9 1131.9 10.3 1133.2 11.6	EV ₁ /heig ΔFEV ₁ /height Range** ht ² (ml/m ²) (ml/m ²) 1121.6 Referent Referent 1126.1 4.5 0.8, 8.2 1130.5 8.9 3.9, 13.9 1131.9 10.3 4.1, 16.5 1133.2 11.6 4.2, 19.0	EV ₁ /height ht² ΔFEV ₁ /height ht² Range** (ml/m²) FVC/height² (ml/m²) (ml/m²) (ml/m²) 1121.6 Referent 1449.2 1126.1 4.5 0.8, 8.2 1453.0 1130.5 8.9 3.9, 13.9 1457.4 1131.9 10.3 4.1, 16.5 1458.1 1133.2 11.6 4.2, 19.0 1458.9	EV ₁ /heig ht ² ΔFEV ₁ /height (ml/m ²) Range** (ml/m ²) FVC/height ² (ml/m ²) ΔVC/height ² (ml/m ²) 1121.6 Referent Referent 1449.2 Referent 1126.1 4.5 0.8, 8.2 1453.0 3.8 1130.5 8.9 3.9, 13.9 1457.4 8.2 1131.9 10.3 4.1, 16.5 1458.1 8.9 1133.2 11.6 4.2, 19.0 1458.9 9.7	

^{*}Percentage of predicted values for each of the counterfactual values of FEV₁ and FVC under each intervention are based on percentages estimated using equations by Hankinson et al. (1999).

^{**}Range of difference estimates from the 50 different multiply imputed datasets

Supplemental Table S3: Predicted FEV₁ and FVC after 10 years of follow-up under hypothetical interventions, and change (with 95% CI) compared to the observed natural course, assuming no censoring (due to death or termination of employment).

	FEV_1			FVC				
Intervention	FEV ₁ /height ² (ml/m ²)	Percent Predicted*	ΔFEV ₁ /height ² (ml/m ²)	95 % CI	FVC/height ² (ml/m ²)	Percent Predicted*	ΔVC/height ² (ml/m ²)	95 % CI
Natural Course	1083.2	90.9	Referent	Referent	1411.9	91.5	Referent	Referent
PM _{2.5} ≤0.51 mg/m ³	1087.7	91.3	4.5	1.2, 7.9	1415.9	91.7	4.0	-0.1, 8.0
PM _{2.5} ≤0.33 mg/m ³	1091.9	91.6	8.7	4.1, 13.4	1420.0	92.0	8.1	2.6, 13.6
PM _{2.5} ≤0.14 mg/m ³	1093.9	91.8	10.7	4.8, 16.7	1421.5	92.1	9.4	2.6, 16.5
PM _{2.5} ≤0.05 mg/m ³	1095.5	91.9	12.3	5.2, 19.5	1422.5	92.2	10.6	2.3, 18.8
$PM_{2.5}=0 \text{ mg/m}^3$	1099.9	92.3	16.7	5.8, 27.6	1425.0	92.4	13.1	0.6, 25.6

^{*}Percentage of predicted values for each of the counterfactual values of FEV₁ and FVC under each intervention are based on percentages estimated using equations by Hankinson et al. (1999).